Definitions of the Symbols Used in the Above **Equations** Cylinder area. Effective area of piston. A_e Piston area. A_k Effective area of the piston at atmospheric A_0 pressure and temperature t_s . Circumference of the piston at the surface Cof the pressure fluid. Pressure difference in the atmosphere be- H_a tween the reference level of the piston gage and the reference level of the system to be measured. Pressure head of the column of pressure H_{tp} transmitting fluid between the reference level of the piston gage and the reference level of the system to be measured. Mass of the pressure fluid at atmospheric M_{fa} pressure contributing to the load on the piston. Mass of the loading weights, including the M_m piston assembly. Absolute (total) pressure. Atmospheric pressure at the reference level P_a of the piston gage. Volume of the submerged part of the piston V_{fa} above the cylinder. Volume of the part of the piston below the V_{fp} cylinder. YYoung's modulus. a d Fractional change in effective area with unit change in temperature. Fractional change in effective area with unit b change in pressure. Fractional change in area with unit change in jacket pressure. Local acceleration due to gravity. Height of the air column measured from the reference level of the piston gage to the reference level of the system. Measurements up from the piston gage reference level are positive. Height of the column of pressure fluid measured from the reference level of the piston gage to the reference level of the system. Measurements up from the piston gage reference level are positive. Height of the reference level of the piston Δh gage with respect to the bottom of the piston. Measurements up from the bottom of the piston are positive. Proportionality factor relating force, mass kand gravity. Gage pressure. p_g hfp t_m Jacket pressure. p_j Pressure measured by piston gage at the p_p reference level of the piston gage. Jacket pressure required to reduce the P_{z} piston-cylinder clearance to zero. Temperature of the piston gage. t Temperature at which piston and cylinder are measured. Reference temperature (usually the nominal t_s room temperature). Length of the submerged part of the piston Vfa above the cylinder. Length of the part of the piston below the y_{fp} cylinder. Temperature coefficient of linear expansion α_c of the cylinder. Temperature coefficient of linear expansion α_k of the piston. Surface tension of the pressure fluid. Y μ Poisson's ratio for the piston. Mean density of the air displaced by the load. Density of the pressure fluid at atmospheric ρ_{fa} Density of the pressure fluid at pressure P. ρ_{fp} Density of the weights. ## 10. Appendix C. Examples of Calculations Fluid-Aviation instrument oil Piston gage No. 1357, Washington, D.C. Machine Calculation: a. Weights: Piston, 1, 2, 3, 4, 5, 6, 7, 8 Accumulative total: 1998.0 psi (from table 1, column (4)) Temperature: 26 °C Correction factor: 0.99967 (from table 3) $p_p = 1998.0 \times 0.99967 = 1997.3$ psi b. Weight No. $M_m \times 7.6726$ (from table 1, column (3)) 9.701)Piston 19.981 99.631 accumulative total 1 2 19.983 from column (4) 3 49.966 6 499.56 7 499.63 499.54 1598.361 psi Temperature: 26 °C Correction factor: 0.99975 (from table 3) $p_p = 1598.36 \times 0.99975 = 1598.0 \text{ psi}$ Slide Rule Calculation: a. Weights: Piston, 1, 2, 3, 4, 5, 6, 7, 8 Accumulative total: 1998.0 psi (from table 1, column (4)) Temperature: 26 °C Correction factor: -0.00033 (from table 4) Correction = $-0.00033 \times 1998.0 = -0.7$ psi $p_p = 1998.0 - 0.7 = 1997.3$ psi Correction Table Calculation: a. Weights: Piston, 1, 2, 3, 4, 5, 6, 7, 8 Accumulative total: 1998.0 (from table 1, column (4)) Temperature: 26 °C Correction = -0.7 psi (from table 5) $p_p = 1998.0 - 0.7 = 1997.3$ psi